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We study the performance of a quantum wire spin filter that is based on the Rashba spin-orbit interaction in
the presence of the electron-electron interaction. The finite-length wire is attached to two semi-infinite non-
magnetic leads. Analyzing the spin polarization of the linear conductance at zero temperature, we show that
spin filtering is possible by adequate tuning of the system parameters first considering noninteracting electrons.
Next, the functional renormalization-group method is used to capture correlation effects induced by the Cou-
lomb interaction. For short wires we show that the energy regime in which spin polarization is found is
strongly affected by the Coulomb interaction. For long wires we find the power-law suppression of the total
conductance on low-energy scales typical for inhomogeneous Luttinger liquids while the degree of spin
polarization stays constant.
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I. INTRODUCTION

The birth of spintronics can be dated back to the discov-
ery of the giant magnetoresistance effect in 1988.1,2 Since
then, many theoretical and experimental studies on spin-
dependent electronic transport have been performed in order
to achieve a clear understanding of the underlying physics
and to investigate the possibility of fabricating spintronic
devices.3–5 One manifest realization of such a device is a
quantum wire with parameters which can be tuned by a set of
gate electrodes such that the transport of electrons with a
certain spin direction is favored. The original proposal by
Datta and Das3 is to use the spin precession in a narrow-gap
semiconductor wire with spin-orbit coupling between two
magnetized leads to modulate the current. However, Strěda
and Sěba6 came up with an idea of obtaining spin polariza-
tion in a �almost� nonmagnetic system. They considered
transport through an infinite quasi-one-dimensional �1D�
quantum wire with Rashba spin-orbit interaction �SOI�, a
magnetic field in the direction of the propagation, as well as
a potential step. In their setup, leads with negligible SOI and
vanishing magnetic field as present in any experimental re-
alization were not taken into account.

The goal of the present work is twofold. We first investi-
gate, under which conditions spin-polarized currents through
a finite-length 1D wire with SOI and parallel magnetic field
can be achieved, if the coupling to two semi-infinite leads is
included. We study the influence of a potential step and a
localized impurity. Such inhomogeneities play an important
role for the spin polarization.

In the Datta-Das setup as well as in the system suggested
by Strěda and Sěba6 the spin-dependent transport properties
heavily rely on the strictly 1D nature of the quantum wire
with only one partially filled subband. Already in the pres-
ence of a few filled subbands the control over the spin
ceases.7 In a few hundred-nanometer-long strictly 1D wires
the Coulomb repulsion of electrons is expected to have a
dramatic effect on the physics. Such systems cannot be de-
scribed by Fermi-liquid theory. Instead, the low-energy prop-
erties are captured by the Luttinger-liquid phenomenology.8

One can thus expect that electron correlations will also affect
the performance of spintronic devices made of 1D
wires.7,9–11 In particular, local inhomogeneities, which are
important to achieve controllable spin polarization in the
Strěda and Sěba setup, strongly suppress the conductance in
Luttinger liquids.12,13 It is thus mandatory to investigate how
the spin polarization is affected by Luttinger-liquid physics.
This is the second goal of our work. A first step in analyzing
the performance of the Strěda and Sěba spin filter in the
presence of the electron-electron interaction was taken in
Ref. 14.

Standard methods such as the self-consistent Hartree-
Fock approximation do not capture the Luttinger-liquid
physics of our setup and are known to lead to severe artifacts
if being applied to low-dimensional electron systems with
Coulomb interaction. We therefore use an approximation
which is based on the functional renormalization-group
�fRG� approach to treat the two-particle interaction in a
model Hamiltonian. In the absence of SOI, it was shown
to be a reliable tool to calculate the linear conductance of
inhomogeneous quantum wires for weak to intermediate
interactions.15,16

We show that for vanishing two-particle interaction spin-
polarized currents can be obtained using a similar mecha-
nism as in Ref. 6, even in the presence of nonmagnetic leads
with vanishing SOI and zero magnetic field. We then include
the Coulomb interaction in our analysis. We first consider
short wires �several tens of nanometers� in which Luttinger-
liquid physics does not become apparent and investigate how
the spin polarization is affected by the two-particle interac-
tion. We find that it strongly modifies the energy regime
�energy of the incoming particles� in which spin polarization
can be achieved. Next, the focus is on system sizes for which
Luttinger-liquid behavior is apparent in the absence of SOI
�wires of several hundreds of nanometers�. In particular, we
analyze if the spin polarization of an inhomogeneous wire is
suppressed as a function of an infrared energy scale. We find
that although the total conductance shows a power-law sup-
pression in the presence of SOI �similar to the situation with
vanishing SOI� the polarization does not follow such a scal-
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ing law. We present indications that the degree of spin polar-
ization in the presence of Coulomb interaction might even
exceed the one obtained for vanishing two-particle interac-
tion.

While in most studies on spintronic devices the correla-
tions are neglected even if the suggested setups contain 1D
quantum wires, our results clearly reveal the importance of
the two-particle Coulomb interaction in the spin filter sug-
gested in Ref. 6. Here we refrain from making direct contact
to existing or future experiment as we are mainly interested
in studying the basic physics within a simplified model. It
must certainly be extended to be considered realistic. How-
ever, our parameters are taken from a physically sensible
range �see below�.

This paper is organized as follows. In Sec. II, we present
our setup and lattice model. The techniques to obtain the
linear conductance are described in Sec. III. In Sec. IV, we
first present our results for spin-polarized transport at vanish-
ing two-particle interaction in the presence of leads. We next
include the Coulomb interaction and study its interplay with
the SOI, the magnetic field, and external potentials. Our re-
sults are summed up in Sec. V.

II. MODEL

A. Spin-orbit interaction

The two prototypical experimental systems for strictly 1D
quantum transport are carbon nanotubes and confined elec-
tron gases which form at the interface of properly designed
semiconductor heterostructures. In the latter, the confining
potential generically leads to a sizable SOI and these are the
type of systems we have in mind in the following. But also in
the former the SOI seems to be surprisingly large.17 We
choose our coordinate system such that the heterostructure
confines the two-dimensional electron gas in the z direction
and the external potential results in a confinement of the
electrons in the y direction. Therefore, the electrons are able
to move in the x direction only. Since we assume the con-
finement to be very sharp, the different electronic subbands
will be well separated. For a sufficiently low electron den-
sity, we can thus focus on the lowest subband and neglect
any subband mixing.

The sharp confinement leads to large electric fields, which
induce a spin-orbit coupling18

HSO = −
e�

4m2c2� · �E � �p −
e

c
A�� �1�

with the electric field E=−�V /e �e�0 is the electron
charge� being the gradient of the ambient potential. For the
1D infinite noninteracting continuum model �1D electron
gas�, SOI results in a horizontal splitting of the quadratic
electron energy dispersion ��k ,s� with wave number k and
s=� being an additional quantum number. Within a certain
parameter regime a magnetic field in the x direction, which
couples to the electron spin, leads to a deformation of the
lower parabolic branch resulting in a double well form �see
the low-energy region of the two central dispersions of Fig.
1�. Moreover, it was shown in Ref. 6 and extensively dis-

cussed in Ref. 19 that the spin expectation values become k
dependent and display a rich behavior in the presence of both
SOI and magnetic field. Applying an additional steplike po-
tential and considering electrons with energy in regions of
only double degeneracy leads to the above-mentioned spin-
polarized transport.6,19

B. Lattice system

The starting point of our investigation is a 1D noninter-
acting tight-binding lattice Hamiltonian. As our single-
particle basis, we choose Wannier states �j ,�� with j
� 	1, . . . ,N
 labeling the lattice site and �= ↑ ,↓ denoting the
spin. The spin quantization is chosen along the z direction.
The Hamiltonian can be written as

H0 = Hfree + Hpot + HR + HZ �2�

with the free part

Hfree = − t�
j=1

N−1

�
�

�cj+1,�
† cj,� + cj,�

† cj+1,�� , �3�

describing the hopping of amplitude t�0 and the external
potential �e.g., due to nanodevice structuring�,

Hpot = �
j=1

N

�
�

Vj,�cj,�
† cj,�. �4�

Here, cj,�
† denotes the creation operator of an electron at site

j with spin �. In a lattice model the effect of SOI due to
confinement in the z direction is accounted for by a spin-flip
hopping20 and the effect of SOI due to confinement in the y
direction by an imaginary spin-conserving hopping.19 Thus
the SOI �Rashba� term reads

HR = − �
j=1

N−1

�
�,��

�z,j�cj+1,�
† �i�y��,��cj,�� + H.c.


+ �
j=1

N−1

�
�,��

�y,j�cj+1,�
† �i�z��,��cj,�� + H.c.
 . �5�

The SOI coupling constants �z,j �0 and �y,j �0 are assumed
to depend on the bond �j , j+1� considered.21 The effect of a

FIG. 1. �Color online� Sketch of the system with SOI and par-
allel magnetic field in the wire. The leads have a cosinelike disper-
sion, whereas the local dispersion in the quantum wire has two
nondegenerate branches �s=+ �solid line� and s=− �dashed line�
. A
potential step which is turned on smoothly at the left contact and
turned of sharply in the middle of the wire is indicated by the
dashed-dotted line. The energies of the incoming and outgoing elec-
trons are confined within the dotted lines.
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magnetic field is captured by the Zeeman term

HZ = 	�
j=1

N

�
�,��

Bjcj,�
† ���x��,�� sin 
 cos �

+ ��y��,�� sin 
 sin � + ��z��,�� cos 

cj,�� �6�

with a site-dependent magnetic field in �for now� arbitrary
direction B j =Bj�sin 
 cos � , sin 
 sin � , cos 
� and 	 being
the Zeeman coupling constant. For N→� this lattice model
was shown to give a similar low-energy dispersion as the
continuum model as well as a similar energy dependence of
the spin expectation values.19

We supplement our model by a local site-dependent Cou-
lomb interaction U1,j

H1 = �
j=1

N

�
�,��

U1,jcj,�
† cj,�cj,��

† cj,���1 − 
�,��� �7�

and a bond-dependent nearest-neighbor Coulomb interaction
U2,j

H2 = �
j=1

N−1

�
�,��

U2,jcj+1,�
† cj+1,�cj,��

† cj,�� �8�

�extended Hubbard model�. The total Hamiltonian of the
quantum wire is given by

H = H0 + H1 + H2. �9�

At sites 1 and N the 1D wire is �end� coupled to two
semi-infinite leads. Having in mind a possible experimental
realization, we assume that the SOI in the leads is weak and
can be neglected. Furthermore, the magnetic field is re-
stricted to the wire region. We assume that after entering the
leads the electrons are independent �Fermi-liquid behavior in
higher-dimensional systems�. For a local lead-wire coupling
and in the low-energy limit, only the leads’ density of states
at the end of the leads and at the chemical potential � �en-
ergy of incoming electrons� matters. For simplicity, we thus
model the leads as semi-infinite 1D tight-binding chains ��
=L ,R�,

H�
lead = − t̃��

j
�
�

�dj+1,�
† dj,� + H.c.
 �10�

with dj,�
† being the creation operator of the leads, j=

−� , . . . ,0 for the left lead, and j=N+1, . . . ,� for the right
one. To prevent a proliferation of parameters we assume
equal leads, set t̃L= t̃R= t, and measure all energies in units of
the lead hopping t=1. Our energy unit is therefore on the
order of 1 eV. At the contacts, the electrons can tunnel in and
out of the wire and the Hamiltonian of the wire-lead cou-
pling is given by

Hcoup = �
�

�tLc1,�
† d0,� + tRdN+1,�

† cN,� + H.c.
 . �11�

The site and bond dependences of �y, �z, the magnetic
field, and the interaction matrix elements allow us to adia-
batically turn on and off these couplings over m1 lattice sites/
bonds close to the wire-lead contacts. This will be done in

order to prevent any unwanted electron backscattering from
the contacts and is reminiscent of the gradual confinement to
the 1D geometry in heterostructures. We emphasize that the
precise shape of the weight function with which the cou-
plings are turned on and off does not have any significant
effect on the results as long as it is sufficiently smooth. In the
bulk of the wire, these parameters reach constant values �for
details, see Sec. III�.

III. METHODS

A. Linear conductance

Using the Landauer-Büttiker approach,22 one can express
the spin-dependent linear conductance G�,�� for vanishing
two-particle interaction in terms of the transmission T������

G�,�� = −
e2

h
� �T�,������2f����d� �12�

with f��� being the Fermi function. The indices � and ��
denote the z component of the electron spin before entering
and after leaving the quantum wire, respectively. The spin is
conserved outside the quantum wire since we neglect any
SOI in the leads as well as spin relaxation. Using the Fesh-
bach projection,23 it is easy to show that the transmission is
connected to the �1,N� matrix element of the retarded single-
particle Green’s function G�,����+ i0� of the entire system
�including the leads�,

T�,����� = 2tLtR sin�k��G1,N
�,���� + i0� �13�

with k�=arccos�−� /2�.
At T=0, on which we focus from now on, the derivative

of the Fermi function is a 
 function and Eq. �12� simplifies
to

G�,�� =
e2

h
�T�,������2 �14�

with the chemical potential given by the Fermi momentum,
�=−2 cos kF. For noninteracting leads, this relation holds
even if the two-particle interaction in the wire is finite,24

where G in Eq. �13� is the interacting Green’s function of the
entire system. To compute the latter we first integrate out the
leads by projection �see Sec. III B� and treat the remaining
interacting system of size N using the approximate fRG pro-
cedure.

Using standard Feshbach projection, the effect of the
leads can be cast in energy-dependent contributions to the
�1,1� and �N ,N� matrix elements of the self-energy.23 They
read

��lead�1,1
�,���z� = 
�,��tL

2g�z� ,

��lead�N,N
�,���z� = 
�,��tR

2g�z� �15�

with the Green’s function

g�z� = z + � � ��z + ��2 − 4 �16�
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of the semi-infinite leads taken at the first lattice site. The
sign must be chosen such that lim g�,��z�=0 as �z�→�. In
the following, we absorb the contribution of the leads to the
self-energy into the noninteracting propagator G0 of the wire.
The full interacting Green’s function is given by the Dyson
equation

G = �G0
−1 − ��−1. �17�

B. Functional renormalization group

We briefly describe the fRG method used here25 to ap-
proximately compute G.26,27 Detailed accounts of the appli-
cation of this method to inhomogeneous interacting quantum
wires have been given in the last few years.15,16 Including the
SOI and the magnetic field does only require minor exten-
sions.

The starting point of the fRG scheme is the propagator G0
which follows from the noninteracting Hamiltonian �2� and
the self-energy contribution of leads �15�. It is supplemented
with a cutoff � such that all modes with Matsubara frequen-
cies ����� are suppressed, i.e.,

G0
��i�� = ����� − ��G0�i�� , �18�

where � runs from � to 0. Inserting G0
� in the generating

functional of the one-particle irreducible vertex functions,
one obtains an infinite hierarchy of coupled differential equa-
tions for the vertex functions by differentiating the generat-
ing functional with respect to � and expanding it in powers
of the external fields. To obtain a manageable set of flow
equations, this hierarchy must be truncated. In a first step, we
neglect the three-particle vertex �3

� since it is zero at �=�
and is generated only from terms of third order in the two-
particle vertex ��, which are small as long as �� does not
become too large.

For arbitrary local U1, nearest-neighbor interaction U2,
and filling n� �0,2� of the band, the flow of the two-particle
vertex must be kept at least to lowest �that is second� order to
correctly obtain the scaling behavior �for large N� of corre-
lation functions to leading order in the interaction. In the
absence of SOI this is already known from the so-called
“g-ology” model.28 An RG analysis of this model shows that
the two-particle scattering with momentum transfer 2kF of
electrons with opposite spin, the so-called g1,� term, flows to
zero. If one is interested in correlation functions of large
systems, this scaling must be captured by any sensible ap-
proximation. For the extended Hubbard model and vanishing
SOI, this has been done in Ref. 16 using fRG. As the param-
etrization of the two-particle vertex used there relies on spin
conservation, it cannot easily be extended to the present situ-
ation with SOI. Here, we are thus forced to proceed differ-
ently.

In the extended Hubbard model the coupling g1,� is given
by

g1,� = U1 + 2U2 cos�2kF� . �19�

If it is zero initially, it will not get generated in a lowest-
order RG analysis of the corresponding g-ology model �for
vanishing SOI�. If one is interested in the behavior of corre-

lation functions to leading order in the interaction, the flow
of the vertex can then be neglected altogether. A vanishing
g1,� is achieved if we stick to parameters U1, U2, and kF
such that the right-hand side of Eq. �19� is zero. Neglecting
terms of the order U2�, where U stands for either U1 or U2
and � for either �z or �y, the same reasoning holds if the SOI
is included. When studying the effect of the two-particle in-
teraction for large systems �Luttinger-liquid behavior in the
scaling limit�, we thus exclusively consider the case

U2 = − U1/�2 cos�2kF�
 �20�

and neglect the flow of the two-particle vertex. This assump-
tion does not affect the asymptotic power-law scaling of the
conductance for vanishing SOI.16 We expect the same to hold
for nonzero SOI and thus focusing on this situation does not
present a severe constraint for our purposes. An fRG analysis
of the flow of the two-particle vertex in the presence of SOI
that would allow us to investigate unique phases resulting
from the interplay between the two-particle interaction and
the SOI �Ref. 11� is left for further studies.

For wires on the order of 100 lattice sites, the flow of the
components of the two-particle vertex is cut off on fairly
large energy scales ��1 /N�, affects correlation functions
�such as the single-particle Green’s function we are aiming
at� only weakly, and can thus be neglected even if one
chooses parameters such that Eq. �20� does not hold. Our
approximation contains at least all terms of first-order pertur-
bation theory in the two-particle interaction.15,16

Within these approximations the self-energy �negative of
the one-particle vertex� becomes frequency independent15,16

and its flow equation reads

�

��
�1�,1

� = −
1

2�
�

�=��
�
2,2�

ei�0+G2,2�
� �i���1�,2�;1,2, �21�

where the indices 1 ,1� and 2,2� label the quantum numbers
j and � and

G��i�� = �G0
−1 − ��
−1. �22�

One starts the numerical integration at a large initial value
�0�108 and integrates down to �=0. Following the de-
scription in Ref. 15, we add a one-particle potential � to the
Hamiltonian H1 and H2, such that the starting value of the
self-energy, which accounts for the finite contribution result-
ing from the integration of Eq. �21� over the interval �� ,�0
,
vanishes. The initial condition for �0→� then reads

�1,1�
�0 = 0. �23�

The self-energy ��=0 at the end of the flow can be consid-
ered as an approximation to the full self-energy. Using the
Dyson equation �17�, the Green’s function entering the ex-
pression for the T=0 linear conductance can be computed.

For our model with only local and nearest-neighbor inter-
actions the self-energy is a tridiagonal matrix in the Wannier
basis states, with each entry being a 2�2 matrix in spin
space. As � is frequency independent within our approxima-
tion, its matrix elements can be interpreted as the interaction-
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induced renormalizations of the parameters of the noninter-
acting model. Depending on the matrix element considered
these are the SOI and spin conserving hoppings, magnetic
fields, as well as on-site potentials all being position
dependent.15,16 This implies that to approximately obtain the
T=0 conductance of an interacting system the Green’s func-
tion of an effective noninteracting problem with renormal-
ized parameters must be computed. This is similar to the
Hartree-Fock approximation. However, we emphasize that in
our approximate fRG a different class of diagrams is re-
summed, with this way avoiding the artifacts known to
emerge if the Hartree-Fock approximation is used for prob-
lems of interacting electrons in low dimensions.

For half filling �n=1�, the electron correlations drive our
system toward a Mott insulator state �details depend on the
parameters U1 and U2�, which becomes of relevance for suf-
ficiently large N.8 As we are here interested in spin-
dependent transport through metallic wires we only consider
fillings away from n=1 when studying large N.29

IV. RESULTS

Following the steps described in Sec. III, we calculate the
spin-resolved linear conductance G�,�� with � ,�= ↑ ,↓ �with
respect to the z direction� as a function of the system’s
chemical potential � �energy of incoming electrons� and the
system size N. The total conductance is given by the sum of
the four components

Gtotal = G↑↑ + G↑↓ + G↓↑ + G↓↓. �24�

As our leads are free of SOI, the definition of the spin polar-
ization does not involve the spin expectation value. This has
to be contrasted to the definition of Ref. 6 for a system with-
out leads. Due to the choice of the z axis as the spin quanti-
zation axis, the spin polarization in the z direction can be
defined as the “normalized” difference between the probabil-
ity that an electron enters the right lead with spin up and the
probability that it enters with spin down;

Pz =
G↑↑ + G↓↑ − G↑↓ − G↓↓

Gtotal
. �25�

The conductance components and spin polarization in the x
and y directions can be obtained by a simple base transfor-
mation. The transmissions which need to be inserted into Eq.
�14� are

T↑↑
�x� = �T↑↑ + T↑↓ + T↓↑ + T↓↓�/2,

T↑↓
�x� = �T↑↑ − T↑↓ + T↓↑ − T↓↓�/2,

T↓↑
�x� = �T↑↑ + T↑↓ − T↓↑ − T↓↓�/2,

T↓↓
�x� = �T↑↑ − T↑↓ − T↓↑ + T↓↓�/2 �26�

and

T↑↑
�y� = �T↑↑ − iT↑↓ + iT↓↑ + T↓↓�/2,

T↑↓
�y� = �− iT↑↑ + T↑↓ + T↓↑ + iT↓↓�/2,

T↓↑
�y� = �iT↑↑ + T↑↓ + T↓↑ − iT↓↓�/2,

T↓↓
�y� = �T↑↑ + iT↑↓ − iT↓↑ + T↓↓�/2, �27�

where T�,�� denotes the transmission with respect to the z
direction. The corresponding polarizations follow as in Eq.
�25� with G replaced with G�x� and G�y�, respectively.

A. Vanishing Coulomb interaction

1. Potential step

To investigate whether spin-polarized currents can be
achieved using a mechanism similar to that of Ref. 6 in the
presence of nonmagnetic leads, we consider a setup that is
close in spirit to the one studied there. We therefore add a
potential step to the wire which can be used to shift the
energy into the region of only doubly degenerate states as
sketched in Fig. 1. To prevent any backscattering at the left
contact it is turned on smoothly there and turned off sharply
in the middle of the wire �dashed-dotted line in Fig. 1�. Due
to the smooth variation of the system parameters at the left
contact, the cosinelike dispersion of the leads is “adiabati-
cally” transformed into the “local” dispersion in the wire. A
similar adiabatic transition occurs at the right contact. As the
achieved wire dispersion is an essential ingredient of the spin
filter to perform properly,6,19 modeling a smooth variation at
the contacts is mandatory. However, assuming a gradual
crossover from higher-dimensional leads to the 1D wire ap-
pears to be quite natural in heterostructures.

Figure 2 shows the spin polarization Pi �i=x ,y ,z� for a
homogeneous system �V0=0, Fig. 2�a�
 and a system with
potential step �V0=0.4, Fig. 2�b�
 for system parameters N
=100, m1=20, �y =0, �z=0.8, and 	Bx=0.6. We chose the
value for �z to be larger than the spin-orbit parameter �
�0.1 eV extracted from Ref. 30 for bulk InAs since the SOI
is significantly increased in semiconductor heterostructures.
The lead-wire tunnel contacts modeled by tL/R are assumed to
be “perfect” tL= tR=1, a situation on which we focus from
now on. The curves show a large spin polarization in x and y
directions for �� �−2+	Bx+V0 ,2−	Bx
, i.e., as long as
there is only one conducting channel. This polarization is a
“trivial” band effect due to the Zeeman splitting. Without
SOI, one obtains a perfect spin polarization in the x direc-
tion, Px= �1, in this interval �see Fig. 3�a�
. For finite SOI,
the spin is rotated out of the x direction leading to nonvan-
ishing components Py and Pz. Similarly to the continuum
situation,19 �z ��y� mainly leads to a spin rotation into the y
�z� direction.

The most interesting energy regime in connection with
Ref. 6 is �� �−2+	Bx ,−2+	Bx+V0
 in Fig. 2�b�. In this
interval of width V0, we observe nonvanishing but strongly
oscillating components of the polarization. The oscillations
can be traced back to those of the conductance components
and are absent in the continuum model of Ref. 6. By a
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mechanism similar to the one discussed in Ref. 6, we obtain
a nonvanishing polarization. As was pointed out in Ref. 19
for the leadless continuum model, the polarization Px �in the
x direction� only depends on the absolute value � and not on
the direction of the effective SOI field and �Py / Pz�= ��z /�y�.
Averaging over the polarization oscillations, this holds in
very good approximation also for the lattice model with
leads, although the polarization here is defined by Eq. �25�
and not in terms of spin expectation values.6 Because of the
large oscillations �absent in the leadless continuum model�
the spin polarization reacts very sensitive to changes in the
chemical potential �. This could be of interest to control the
spin polarization in future spintronic devices.

2. Single impurity

Another interesting polarization effect occurs if we insert
a localized impurity of strength V1 in our system with SOI
and parallel magnetic field. The exact position of the impu-
rity within the bulk part of the wire does not matter and we
here locate it in the middle of the wire.

Figure 3 shows the conductance and spin polarization of a
system with N=101 lattice sites �m1=20� with a single-
impurity V1 for a magnetic field 	Bx=0.6 and different SOI
couplings �z ��y =0�. The system without SOI and without
any impurity �V1=0� shows a perfect steplike polarization in
the x direction �trivial band effect�, whereas Py = Pz=0 �see
Fig. 3�a�
. The step is smeared out and Px can be tuned
smoothly in the presence of an intermediate to strong single-
impurity V1=4 while the total conductance is severely de-
creased in this case �see Fig. 3�b�
. For small SOI, �z=0.2,
Px is still the dominant polarization component, but Py and
Pz become finite. All polarization components show oscilla-
tions for �� �−2+	Bx ,2−	Bx
, which become heavily pro-
nounced at the edges of this interval �see Fig. 3�c�
. For large
SOI �see Fig. 3�d�
, �z=0.8, we observe the same behavior
for �� �−2+	Bx ,2−	Bx
 as in the impurity-free case �see
Fig. 2�a�
 with Pz playing only a minor role. The oscillations
of the polarization components are more pronounced com-

pared to the case with small �z, especially for Px. Moreover,
the total conductance is enlarged due to the smaller ratio of
V1 and the effective hopping �t2+�z

2. Due to the large oscil-
lations, each spin polarization component reacts very sensi-
tive to changes in � and can therefore be tuned by adjusting
�.

In this section we studied systems with N�O�102� lattice
sites, corresponding to wires on the order of tens of nanom-
eters. For vanishing two-particle interaction increasing the
number of lattice sites does not affect the results obtained
here.

B. Effect of the Coulomb interaction

We now add the terms H1 and H2 given in Eqs. �7� and �8�
to our Hamiltonian and use the fRG to approximately com-
pute the conductance. We first study short quantum wires
with N�O�102� lattice sites and investigate how the energy
regime �of the incoming electrons� in which spin-polarized
currents can be obtained is modified by the Coulomb inter-
action. Changes can be traced back to the interaction-induced
renormalization of the parameters of the noninteracting
model.31

In a second step we focus on a fixed chemical potential, at
which spin polarization is observed and study how this is
modified if the system size N is increased. The inverse of N,
more precisely 
��F /N �with the Fermi velocity �F�, pre-
sents an infrared energy scale in our setup. In the absence of
SOI and a magnetic field, inhomogeneities, such as single
impurities and potential steps, are known to lead to a power-
law suppression of the conductance as a function of infrared
energy scales.12,13,15,16 We demonstrate that while the total
conductance shows a similar behavior for finite SOI, the po-
larization does not display scaling behavior.

To model a gradual transition from a higher-dimensional
to a 1D system at the lead-wire contacts, we gradually in-
crease U1 and U2 over m1 lattice sites starting at the contacts.
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This prevents electron backscattering at the contacts due to
the inhomogeneous two-particle interaction and one achieves
unitary total conductance in the absence of an external
single-particle potential. As the details of the variation of the
interaction do not matter as long as it is sufficiently
smooth,32 we chose the same weight function as for the
single-particle parameters. For an increasing chain length,
the number of lattice sites over which the two-particle inter-
action and the single-particle parameters are turned on and
off close to the contacts must be increased.32

1. Short wires

Figure 4 shows the total conductance and spin polariza-
tion as a function of the chemical potential � for a system
with the same parameters as in Fig. 2�b� but for nonvanish-
ing Coulomb interaction. We consider a constant ratio of
local and nearest-neighbor interactions, U1 /U2=2 �which ap-
pears to be a rather physical value�, denote the local interac-
tion U1 by U, and study its affect on Gtotal and Pi �i
=x ,y ,z�. Comparing Figs. 2�b�, 4�a�, and 4�b�, one notes that
an increase in U leads to a broadening of the energy regime
with two open conducting channels, that is perfect conduc-
tance Gtotal�2e2 /h, and vanishing spin polarization. The
Coulomb interaction thus leads to a decrease in the energy
range in which spin polarization can be achieved. We empha-
size that within our approximation the above behavior can be
understood in terms of transport through a quantum wire
with vanishing two-particle interaction but renormalized
single-particle parameters �regular and spin-flip hoppings,
magnetic field, and on-site potentials, all of them depending
on the lattice site index j� given by the self-energy at the end
of the fRG flow.31

We now investigate the influence of the Coulomb interac-
tion on the transport properties of a short wire with a single-
impurity V1 in the middle of the quantum wire. Figure 5
shows the total conductance Gtotal and polarization compo-
nents Pi �i=x ,y ,z� for a system with N=101 lattice sites

�m1=20�, SOI parameters �y =�z=0.5, and magnetic field
	Bx=0.6 in the x direction for V1=2. Increasing the Cou-
lomb interaction, we observe two tendencies. The first one is
the increase in the energy regime with two conduction chan-
nels already found in the presence of the potential step. As
the electrons scatter off the single impurity this does not lead
to unitary conductance in the present case �in contrast to the
case of a potential step�. The second effect is an overall
decrease in the total conductance with increasing U. This
was to be expected as it is known that the effective strength
of inhomogeneities increases in the presence of Coulomb
correlations, eventually leading to power-law suppression for
sufficiently large N �that is sufficiently small energies

�.12,13,15,16

For the fairly short wires studied in this section, results
from first-order perturbation theory in the two-particle inter-
action �for the self-energy� lead to qualitatively similar re-
sults as those obtained by our approximate fRG scheme. This
does no longer hold for the longer wires studied next
�Luttinger-liquid behavior�.

2. Luttinger-liquid behavior in long wires

In the absence of SOI and a magnetic field, the linear
conductance of a Luttinger-liquid wire with a single-impurity
V1 is known to show power-law suppression as a function of
an infrared energy scale �e.g., the temperature or 
�vF /N�,
provided the latter is sufficiently small �scaling
regime�.12,13,15,16 Surprisingly Gtotal vanishes in the
asymptotic low-energy limit even for small V1. However, the
energy scale beyond which scaling holds depends on V1 and
becomes exponentially small for small V1, implying that ex-
ponentially long chains must be studied to observe power-
law behavior. The scaling exponent is a function of the in-
teraction and the filling but is independent of the strength of
the bare impurity.12,13,15,16 For the extended Hubbard model
and our choice of the ratio U1 /U2=U /U2=−2 cos�2kF� �van-
ishing two-particle backscattering g1�; see Sec. III B� it is
given by

0

1

2
G

total
P

x
P

y

P
z

-2 -1 0 1 2
µ

-1

0

1

2

G
to

ta
l(e

2 /h
),

P i

U=0.6

U=1

a)

b)

FIG. 4. �Color online� Total conductance and spin polarization
as functions of the chemical potential � for a system with N=100
lattice sites �m1=20�, potential step V0=0.4, magnetic field 	Bx

=0.6, and different Coulomb interactions U=U1=2U2. Increasing
the Coulomb interaction �from �a� to �b�
 for constant SOI �z=0.8
��y =0� leads to a broadening of the energy regime with two open
conducting channels. The spin polarization vanishes in this regime
but reveals a strong dependence on � in the regime with only one
conducting channel.

-1

0

1

2
G

total
P

x
P

y

P
z

-2 -1 0 1 2
µ

-1

0

1

G
to

ta
l(e

2 /h
),

P i

U=0

U=0.6

a)

b)

FIG. 5. �Color online� Total conductance and spin polarization
components for a system with N=101 lattice sites �m1=20�, SOI
coupling parameters �y =�z=0.5, magnetic field in the x direction,
	Bx=0.6, and a single-impurity V1=2 in the middle of the system.
Increasing �from �a� to �b�
 the two-particle interaction U leads to
an increase in the energy regime with two conduction channels, but
with an overall decrease in the total conductance.

SPIN-POLARIZED CURRENTS THROUGH INTERACTING… PHYSICAL REVIEW B 79, 085420 �2009�

085420-7



2�B = −
�2 − 4 cos��n�

�2 − �2��2�t sin��n/2�

U �28�

to a leading order in U.16 It was shown earlier that the ap-
proximate fRG procedure captures this power-law behavior
and correctly reproduces the scaling exponent to the order
U.15,16 In order to be able to compare our results to Eq. �28�
we need to know n and therefore tune the additional one-
particle potential ��U ,��, presented in Sec. III B, such that
the filling of the 1D quantum wire with electrons in the
presence of U1 and U2 corresponds to the filling
n=2 arccos�−� /2� /� of the noninteracting leads at given �.
Following Ref. 16, the starting values of the self-energy at
lattice site j due to integration of the flow equations from �
down to �0 are given by

� j,j�
���;�0 = �1

2
U1,j + 2U2,j�
 j,j�
�,��, j � 	2, . . . ,N − 1
 ,

� j,j�
���;�0 = �1

2
U1,j + U2,j�
 j,j�
�,��, j = 1,N �29�

up to corrections of the order 1 /�0.
We first investigate if power-law scaling in the presence

of a single impurity is also found for nonvanishing SOI, but
zero magnetic field, a situation in which no spin polarization
is found. To this end we compute the total conductance as a
function of 
�vF /N for fixed �small� U�1 �range of appli-
cability of our approximate fRG procedure�, fixed filling n
�1 �see the discussion in Sec. III B�, fixed SOI, and fixed
intermediate to large V1 �such that the scaling regime is
reached for N�O�103�
. The data for Gtotal�
� can be fitted
by a power law and we extract the asymptotic exponent. An
example of the power-law behavior �as a function of N
�
−1� in the case of an additional magnetic field is shown in
the inset of Fig. 7. The scaling exponent depends on the SOI
via an effective renormalized spin-conserving hopping

teff = ��y
2 + �z

2 + t2, �30�

that is, the dependence of 2�B is given by Eq. �28� with t
replaced with teff. This is shown in Fig. 6 for U=0.3, n
=0.75, and different �y as well as �z. The systematic devia-
tion of the data from the analytical expression �28� with t
→ teff can be explained by higher-order corrections in U in-
cluded in the numerical data, but not in Eq. �28�. The error of
the fRG exponents extracted from fitting Gtotal�
� for systems
of a few thousand lattice sites is on the order of the symbol
size.

Next we consider the case of a single impurity in the
presence of SOI and a magnetic field in the x direction, a
situation with nonvanishing polarization �see the discussion
in Sec. IV A 2�. The main part of Fig. 7 shows the N�
−1

dependence of the three components of the polarization for
V1=8, �y =�z=0.5, 	Bx=0.6, n=0.9, and U=0.8. In the inset
we present the corresponding total conductance on a log-log
scale. While the latter shows a clear indication of power-law
suppression, the polarization oscillates with a constant am-
plitude Aosc. A similar oscillation is found for U=0. In fact,
the amplitude of the oscillation shows a nonmonotonic de-

pendence on U. Starting from U=0, it first decreases linearly
with increasing U up to U=0.3 but increases for U�0.3 �see
Fig. 8�. For U=0.8 as shown in Fig. 7 the amplitude is
roughly a factor of 1.5 larger than in the noninteracting case.
Figure 5 indicates that the details of this behavior depend on
the filling �chemical potential of the incoming electrons�.
The above result implies that although the total current
through �total linear conductance of� a quantum wire with a
single impurity, SOI, and a magnetic field in the direction of
the wire is generically strongly reduced as a function of N in
the presence of the Coulomb interaction, the degree of spin
polarization of the current stays constant. We note that the
increase in Aosc as a function of U �see Fig. 8� has to be
considered with caution as our approximation is only valid
for sufficiently small U, while the increased polarization
�compared to the noninteracting one� requires a small to in-
termediate U. It would thus be important to investigate the
polarization using alternative methods. We verified that the
exponent of the power-law suppression of Gtotal�
� is inde-
pendent of 	Bx and thus to leading order in U given by Eq.
�28� with t replaced with teff.
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FIG. 6. �Color online� Dependence of the scaling exponent on
the strength of the SOI �varying �y as well as �z� for U=0.3 and
filling n=0.75. The circles are the data extracted from fitting
Gtotal�
� by a power law for systems of a few thousand lattice sites.
The error is on the order of the symbol size. The effective hopping
teff depends on �y as well as on �z and is defined in Eq. �30�. The
line shows the analytical expression �28� with t→ teff. The system-
atic deviation of the fRG data from the analytical expression can be
explained by higher-order corrections in U included in the numeri-
cal data, but not in Eq. �28�.
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It would now be very interesting to investigate the scaling
of the conductance and the dependence of the polarization on
the length of the quantum wire for the setup with a potential
step.6 Unfortunately, it turns out that the relevant
2kF-scattering component of the potential step which is
turned on adiabatically at the left contact but is turned off
abruptly in the middle of the wire with a step height of a few
10% of the bandwidth is fairly small. We thus cannot reach
the scaling regime for the accessible system sizes of order
the 103–104. For larger step height the physics is dominated
by trivial band effects we are not interested in. As for weak
�local� single impurities the total conductance in the presence
of the potential step decreases weakly with increasing N �no
power-law scaling at the corresponding 
� while the compo-
nents of the polarization oscillate with N with an amplitude
which is constant. One can enhance the effect of the potential
step �the size of the 2kF-scattering component� by adding a
�sufficiently strong� single impurity located in the middle of
the system. For this combined inhomogeneity we observe
exactly the same behavior as shown in Fig. 7 for a pure
�strong� single impurity. Having this in mind we conjecture
that a potential step with a sufficient large step size not lim-
ited by the finite bandwidth will have the same effect on the
total conductance �power-law suppression with length of

wire� and the spin polarization �oscillation with an amplitude
independent of the wire length� as a single localized impu-
rity.

V. SUMMARY

We have investigated the effect of SOI, a magnetic field,
and the Coulomb interaction on the transport properties of a
1D quantum wire attached to two semi-infinite noninteract-
ing and nonmagnetic leads. Motivated by analytical calcula-
tions for a leadless noninteracting system described by a con-
tinuum model,6,19 we have constructed a corresponding
lattice model. The combined effect of SOI and a magnetic
field led to a spin polarization which could be varied over a
wide range in the presence of inhomogeneities �single-
impurity potential step� by adjusting the energy of the in-
coming electrons �chemical potential�.

Using the fRG, we were able to include the Coulomb
interaction in our system. We distinguished the cases of short
quantum wires �on the order of a few tens of nanometers�
and long ones �scaling regime; a few hundred nanometers�.
For short wires, we showed that the energy regime for which
spin polarization can be found strongly depends on the Cou-
lomb interaction and might even become very small depend-
ing on the other system parameters. For long wires the well-
known power-law suppression of the total conductance of an
inhomogeneous Luttinger liquid as a function of the system
size was obtained with a scaling exponent which depends not
only on the two-particle interaction and the filling �both as
for vanishing SOI�, but also on the strength of the SOI via an
effective nearest-neighbor hopping. However, the spin polar-
ization as a function of system size exhibited oscillations
with constant amplitude, not signaling any suppression on
low energy-scales �that is for large system sizes�. We found
indications that the amplitude of the oscillations and thus the
degree of spin polarization might even become larger than
for vanishing Coulomb interaction.

Our results indicate the importance of the two-particle
Coulomb interaction in the spin filter suggested in Ref. 6. In
most studies on spintronic devices these correlations are ne-
glected even if the suggested setups contain 1D quantum
wires. Obtaining a deeper understanding of the performance
of 1D spin filters within more realistic models of interacting
electrons presents a challenge for future theoretical studies.
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